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| : A minimum response time criterion is used in

‘ the design of a pitch attitude controller for a
flexible launch vehicle. The criterion is applied

to a fourth order model containing the primary

dynamics of an assumed thirteenth order vehicle. —
A collection of time-optimal, open loop '
trajectories is used to define the closed loop

control law., Results of an analog simulation are
presented which show that this control law properly
applied to the flexible vehlicle results in good

control, A JTHb 2
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Introduction

The purpose of this paper is to show that
optimal control theory may be applied in the
rational design of closed loop regulators_for
practical plants of high order, The time-optimal
criterion applied to pitch attitude control of a
flexible launch vehicle serves to 1llustrate some
of the problems involved in applications to
significant control problems and to demonstrate
some potential solutions. The techniques suggested
are of course applicable to a much wider class of
problems_than the one consldered. For example
the time~optimal design criterion may be applied
to any state variable or any linear combination of
the state variables. The truncated model of

the complete plant is a sultable model for any
design criterion. Similarly, the adjustable
logical_network used for obtaining and mechanizing
‘the non-linear control law from a collection of
open loop trajectories is valuable either for
simply mechanizing a known non-linear control law
or for obtaining closed 1oop'control according to
a control law which is only implicitly defined.

Equations of Motlon

The assumed equations of a typical 250,000
pound flexible launch vghicle are glven in Table 1,
 Poles and zeros of the-%} transfer function are
listed in Table 2, Airframe coefficients are

taken at the maximum dynamic pressure flight
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condition with flight speed assumed constant, The
equations include dynamics of the rigid body,
three body flexure modes, tall-wags dog, actuator,
rate servo and an integration of pitch rate for
control of pitch attitude., A single control
variable is assumed avallable from gimbaling of
the engine,

Specification of the Controller

In applying optimal control theory to the
synthesis of controller for practical plants 1t
is necessary to specify both the optimization
eriterion and what variable or variables are to
be controlled, For each criterion such as
minimun response time, minimum fuel, minimum
error squared, etc,, there will be many different
choices of controlled variables, Some of these
choices will more closely meet the requirements of
the physical situation than others. Some of the
choices may be completely unacceptable as
1llustrated by time optimally regulating the
state vector of the rigld launch vehicle in
Figure 1, When all components of the state
vector, pitch'attitude, pitch rate, angle of attack.
and gimbal deflectlon are brought to zero in .
‘minimum time from an initial disp;acement in pitch
attitude of 0.01 radian, displacements of attitude
and angle of attack greater than 0,15 radian occur.
Although this is the time-optimal response for
regulation of the state vector, it is certalinly
not acceptable since it would literally destroy
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the vehlcle, On the other hand, if the problem
posed 1s that of bringing the single component,
pitch attitude, to zero in minimum time and holding
-1t there then the deadbeat response to step in-
put of attitude is obtained (Figure 1). In this
case angle of attack and gimbal deflection are 1
 not zero at the response time (time when 6 and 8
_are first zero) but decay with a 21.7 second time
constant characteristic of the plant. Single |
component control such as this _can be described .
as motlon to a region in the n-~dimensional space.
The target region is determined as that region in
n-gpace where the component being controlled is
zero and 1s capable of being held there with a
bounded control variable., (Reference 1, 2). The
necessary and sufficient conditions for minimum
time motion to such a regilon have been obtained
(Reference 3).

In the work presented in this paper, optimum
control synthesls techniques are demonstrated for
control of pitch attitude. The controller obtained
is fourth order, one dimensional, That is, the
control variable is a function of four variables,_
and the target set is a line segment in this four-
space, Cholce of pitch attltude was arbitrary.

- The techniques apply equally as well to control
of other components of the stgte vector or to
control of a linear combination of them such as
minimum drift,
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A Truncated Model

Although time-optimal control theory applies.
in principle to regulation of plants of any order,
it is not desirable nor necessary to apply it in __
controller design to the complete plant representa-
tion when the motion of the variable being
controlled is primarily influenced by relatively
few variables. In the launch vehlcle considered,
the flexure mode frequencies are quite'high and
aero~dynamic coupling small so flexure has only
minor effects on rigid body pitching motion. _The.
same is true of the actuator dynamics. Conse-
‘quently there 1s a natural division of the plant
into a set of dominant and a set of secondary
dynanmics, T™me~optimal synthesls 1s applied to
control the dominant modes only, and conceptuaily
the secondary dynamics act as a filter on the
primary modes, 8 1s shown in Figure 2, The
transfer function —s , for the entire plant of
Table 1, has been divided into two parts

6.(s) ‘
R
== 0 (s): Gy(e) o
Primary dynamics are contained in
0.8808 (s + 0,0478) . ‘ (2)

G, =
1 8(s+0.02) (s ~ 1.4296)(s+1,4964)

and seéondary dynamics in 62. Feedback of the
fletitious output of Gl is used for controller
design. The partial princilple coordinate methods
of Reference 4 permit one to derive the linear



transformation relating the y coordinates to the
state of the system, x. The transformation

¥ =Ix - (3)

where y is an m-vector, L an mxn-matrix and x

an n~vector, in general, then permits the
fictitious control loop of Figure 2 to be changed
to the one which is physically reallizable in

Figure 3. ,
A plant in state vector form which gives the

transfer function of equation (2) is,

7. [o 1 0 o || [o]

Vo| |0 -0.0394 2.,1403 -h4.ho4 s

Sl ' + u
V3 0 1,00 -0,02738 ~0,04213 V3

yu0 {06 0 -0.02 ||y,] |0.2

- = b= L ()

¥,(8) y3(s)
This was obtained by deriving ———r and "EET

transfer functions from a set of equations of this
form but with unknown coefficients and then
adjusting coefficients to glve the proper poles,
zeros and gains. A similar set of equations could
be. obtained directly from the transfer functions
of equation (2) and the transformation to
continuous coordinates of Reference 5,

The transformation matrix L, which relates
the output of the flexible vehicle to the y
variables contains many elements which are very
small, It is possible to neglect. these, The
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transformation used in the analog simulation was,
ra - _ 1 To. T

" OF ~ryl (1 0. 03&1 o 0 0 , OR

'53 - yé | 'o 0.999 O. 0729 0 0,15

R|
1. 1" - (5)
Gpi (Y3 0 0.0341 0.999 0 0.0026| |ap| -
8} vyl [0 O o 1 o ] |s
68
L "

Because of the close correspondence of the y!s
with the rigid body variables, a new set of
variables OF,QF,aF, g 18 defined in equation (5)
Motion of GF corresponds very closely with that
of 65, s0 1t 1s reasonable to take equation (4) as
the truncated model of the full system.

Two points should be emphasized in the
choosing of a truncated model for controller design.
First, division of the plant into primary and
secondary dynamiﬂs cannot be made until the
variable to be controlled has been specified. This
. variable may be one of the physical variables
appearing in the state vector x or may be a
linear combination of them, Second, even if the
secondary dynamics are a result of a limited number
of physical variables in the equations of motion,
(Table I), the primary dynamics cannot be obtained
by simply neglecting these variables and equations,
For example, if the equations for the flexure
modes and actuator were.omitted in truncating to
a fourth order model corresponding to G1, the

T A o Ta

o AT 1 T
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| p&les_ﬁt_;1.4962 and 1,4296 would be ﬁt :i.47
and 1.403,

Closed~Loop Time~-Optimal Control lLaw

The next step in the synthesis procedure is
to derive a closed-loop controller for the model
of equation (4), The criterion for design is
time-optimal regulation of pitch attitude; that
.18 65 18 to be brought to zero from an initial
condition in minimum time subject to a bounded
control variable, and then held at zero., This
corresponds to motion to a one dimensional line
segmgnt in the four dimensional space of |
Ops» Ops Ops Op. \ |

There 1s no known method for obtaining a
useful closed form expression for the closed-
loop control law u(x) which moves the plant to the
desired line segment optimally, However, it is
possible to compute open-loop solutions u(t,x(0) )
for any initial condition x(0) using the computa-
tional techniques described in Reference 6, These
techniques solve a set of transcendental equations
for a control variable u(t,x(0) ) which is con-
strained to satisfy the maximum principle. Since ' ’
the maximum principle has been shown to be a
necessary and sufficlent condition for the optimum
solution, the u(t,x(0) ) obtained 1s the optimal
one, It is not practical to solve the required
equations on line to achieve effective closed-loop
control. Instead a collection of open~loop
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optimum trajectories from a set of initilal
conditions distributed evenly throughout the
phase space region of 1nterest is used to define
a closed-loop control law by the method described
in Reference 7. Each of the variables GF, éF’
Cps and GF 1s divided up into 32 reglons called
quanta, A Boolean variable xg, is defined . for .
each quantum (1 = 1, 2, 3, 4, J =1, 2, ... 32).
The varilable X{~takes a value one if the measured
magnitude of the 1% variable is within the jth
region and takes the value zero if the magnitude
is within any other region. A logic fomrm,

hb 32 o
u(x) = sign[ s =z xdAd (6)

_ i=l J=1 .
is assumed capable of mechanizing the control law
and the 128 constants, Ai,
are experimentally adjusted to make u(x) agree
with the optimum control varible dlscrete points
on the optimum trajectory. This adjustment or
training procedure is shown in Figure 4., Switch
S 18 opened at t = O and the open-loop optimal
solution u(t) applied to the simulated plant.
Output of the plant x(t), is the input to the
logical net and the output of the net u(x (t) ),
is compared with the optimum control variable
u(t,x(0) ) at discrete intervals of time, If the
control variables are different, the XJ corres~
ponding to the XJ's which are one for that x(t)
are incremented in the direction to make the sign
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of their sum the same as the sign of u(t,x(0) ).
If u(x(t) ) and u(t,x(0) ) are the same then no
adjustment is made, This procedure was carried
out on a general purpose digltal computer using a
set of 198 optimum trajectories for the plant of
equation. (4), distributed in the space,

0 ¢ 0, < 0.1
. «02 < 6, < 0.12 |
- > ¥ T A7)

Control variable comparison points were at
intervals of 0,1 second. As the adjustment is
carried out, the number of differences (called
errors) between u(x(t) ) and u(t,x{0) ) is an
_1nd1cation of the convergence of the procedure,

The per cent errors, 100 NS Of err°?§,1n N points

18 plotted as a function of the number of trajector-
ies in Figure 5., First switch points are those '
between t = 0 and the first swltch time, second
switch points between the first switch time and the
"~ second, etc, Initial xJ were all taken to be zero.

| It i1s seen that errors drop very rapidly at first,
being less than 10 per cent after only 100
trajectories, At 5000 and 7500 trajectories the _
resolution of the loglc of equation (6) is artific-
ally increased by multiplying all xils by two.

At 11,000 trajectories the AJts are multiplied

by a factor of ten. Typlcal closed~loop control
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responses using the logic at the stages of
training shown in Figure 5 are presented in
Figure 6, At 198 trajectories the controller has .
not yet stabilized the statically unstable vehicle,
At 2100 trajJectories the closed loop is
apparently stable but responses are poor. At
11,000 trajectories responses closely approximate
optimum, (Limited hardware did not permit
evaluation of closed-loop responses at 13,500
trajectories). The logic of equation (6) with
constants at 11,000 trajectories is taken as .
the closed-loop controller for the plant of Table 1,
The slow convergence of the training
procedure shown in Figure 5 should not be taken_
as typical, In the case shown, the initial con=

stants AJ were taken equal to zero and after re-

peating the 198 trajectories three times, the
rate of reduction in errors was limited primarily
by build-up of the megnitudes of the AJ's.
Convergence to a good contreoller can be speeded
up by several means including starting with A's
corresponding to a planar approximation to the
surface, or by multiplying the A's by a constant
at 600 trajectories_instead of at 5000. Even
without these speed-up procedures however, the
‘computer time to obtain the final controller used
was not prohibitive. Approximately five hours _
of Honeywell-800 computer time were used to obtain
- 500 optimum solutions, compute trajectories for

198 of these and store them on tape and then
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adjust the logic as described in the text and
shown in Figure 5,

Control of the Flexible Vehicle

A block diagram of the control system i8
gilven in Figure 7. Mechanlzation of the loglcal
net for this optimal control of the fourth order
plant was accomplished using standard, commercial
analog to digital converters for quantization and
diode~transistor logic in conjunction with
standard ladder networks to form the logic of
equation (6) (Reference 7). A linear switching

‘mode of the control variable was used when the
plant output was within approximately one quantum
of the target set., This reduced residual errors

due to switching on & gquantized switching surface

~and held the plant within the target set. The
~  linear switching used in this mode was,

.U = gign [OF + 1.25 GF + 0,65 eF]

- No attempt Was.made to minimize the steady state
limit eycle with the control variable in, this mode.,
Two schemes for measurement of the varlables
fed back to the controller were investigated. The
first measured the state of the system using the
method of Reference 8 which uses a complement of n
sensors in measuring the state of an nth order
 system. In the second, a rigid body pitch rate
signal was derived using the phase blending
technique of Reference 9. This provlided a signal
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which could be freed of first mode influence,
however in this case a slight amount of first
mode feedback was included in the signal to damp
the first mode bending. |

Typlcal analog responses are shown in
Figures 8, 9, 10, and 11. Rigid body pitch
attitude responses are quite similar for rigid
body  feedback and for blender feedback of pitch
rate, The small amount of first mode feedback
(blender gain K, = 0.9) causes the first mode to
damp out with the blender system whereas with
rigid body feedback there 1s a sustained oscillation.
When the blender gain Kl was set to cancel all
first mode feedback (K1 = 1,0), the blender system
also exhibited a sustained oscillation of the first
mode. Responses to U40-fps sharp-edged gusts
are shown in Flgure 10, The single component
attitude regulator essentially ignores the gust
disturbance and maintains the desired attitude,
Figure 11 1llustrates response to various command
inputs, Although the system was designed to
approximate time optimal regulation, it exhibits
a very good following capability. -

Coﬁclusion

It has been shown that the collection of
experimental procedures andmtheorétical knowledge
18 sufficient to use a time-~optimal regulation
criterion for rational design of controllers for
a high order plant with known coefficients. The
synthesls procedure includes obtaining a
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representative set of open~loop optimum
trajectories for a truncated model which is based
on the dominant dynamics of the plant. The set
of open~loop trajectories is used to define a
c¢losed=-loop control law for the model, When this
controller 1s applied to the full plant, the
output is effectively that of the optimally
controlled model filtered by the secondary .
dynamics of the plant, The resulting controller
is relatively simple. However measurement re-
quirements are severe in that the entire state of
the system must be measured, This is feasible
using the methods of Reference 8 but undesirable
because o% the large number of sensors required.‘
Such schemes as the gyro blender give promiae

of relaxing these requirements, :
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s . ORr(s)
Tablel. Critical frequencies of G(s) =
U(s)
Static gain of airframe = 0.0985 rad/rad
Source Poles Zeros
Pseudo - Integrator -0.02 --
i
Actuator -30 -- i
-6.5+j65V0.99 g
Rigid Body 1. 4296 -0. 0478
-1. 4964
]
Tail Wags Dog -- -0.0233 +j 57.00 |
First Bending Mode -0. 0962 + j 18. 00 -0.120 £ 17. 77
Second Bending Mode -0.233 + j 46. 34 -0.225 + j 46. 81
Third Bending Mode -0.479 £ 92. 69 -0. 454 + j 94. 35
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Time Optimal Control of a Rigid Launch Vehicle
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